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regions than others. The centroid of the structure- 
factor probabi l i ty  distr ibution is obtained,  in this case, 
by taking the Fourier  t ransform of the expected elec- 
tron-density function. In other terms, each atom of a 
molecular  replacement  model  would be smeared over 
its distr ibution of possible positions. It is assumed 
that there is a sufficient number  of  independent  contri- 
butions to the difference in the structure factors, so 
that the central l imit theorem applies and the prob- 
ability distr ibut ion is a Gauss ian  about the centroid 
estimate. 

For a model  of  a crystal structure, it is preferable 
to consider the average effect of  a specific set of  errors 
on a set of  structure factors, in other words to consider  
the reciprocal-space vector as the random variable. 
The probabi l i ty  distr ibutions underlying the differen- 
ces between the model  and the true structure enter 
through the frequencies of the errors over all the 
atoms. Essentially the same probabil i ty distr ibutions 
of structure factors arise as in the previous case, 
because of  the symmetry between real and reciprocal 
space in the Fourier  transform. 

Considered in terms of  normalized structure fac- 
tors, all sources of  error have the same effect, which 
can be summarized  in a single parameter,  o¥. This 
parameter  plays the same role in the probabi l i ty  distri- 
butions as O" A in the distr ibutions of Srinivasan & 
Ramachand ran  (1965). Therefore, the methods sug- 
gested previously to estimate phase probabil i t ies  and 
to calculate electron-density maps (Read, 1986) are 
still valid. However, the interpretation of  the par- 
ameter ere is different. In particular,  the variat ion of 
o¥ with resolution cannot  be attributed entirely to 
coordinate error. Methods such as the Luzzati (1952) 
plot and the o'a plot (Read, 1986) to estimate coordi- 
nate error will therefore suffer from a number  of 
sources of  systematic error. 

It is a pleasure to acknowledge helpful  discussions 
with Marie E. Fraser and Trevor N. Hart. The author  

is an Alberta Heritage Foundat ion  for Medical  
Research Scholar. 
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Abstract  

Cubic  sublattices of cubic lattices are described which 
share only some of the point-symmetry operations 
with the original lattices; the common operat ions 
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form the point  groups 3m, 3, 4/m,  2 / m  or 1. Some 
properties of  these sublattices, including the centred 
ones, are shown and tentative terminology, notat ion 
and classification are introduced.  All the different 
types of incl ined primitive cubic sublattices L, for 
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n = 3, 5 , . . . ,  31, 63, 81 (n being the length of the unit 
cube edge) of L~ are listed. Several remarks and 
hypotheses concerning theoretical crystallography 
and number theory are presented. 

1. Introduction 

For physical purposes, namely in treating the 
phonons in cubic crystals in terms of gradually 
enlarged unit cells (Frei & Deus, 1984; Frei & Pol~fk, 
1984; Frei, Mandula & Slanina, 1985), cubic sublat- 
tices E of cubic lattices L have been examined, 
especially those with the maximal common point 
group P* =/5 n P = m3m (i.e. the klassengleiche sub- 
lattices). However, more general types of cubic sub- 
lattices have been found. Not being aware of any 
systematic treatment of this topic, which may be of 
interest in crystallography and number theory, the 
author gresents here some facts and suggestions using 
tentative terminology and notation. 

In the following, all the numbers dealt with are 
integers. 

2. A simple example 

L3(221; 122; 212) is an inclined cubic sublattice (ICS) 
of LI=LI(100;010;001)  with P * = 3 m .  Here 
L,(a; b; c) means a primitive cubic (p.c.) lattice with 
basis vectors of length n, the parameter a being omit- 
ted. Among all the ICS, L3 has the smallest unit cell 
which can easily be imagined as embedded in L1. Let 
us therefore point out some features of L3; these will 
then be considered with L,, n > 3. 

(a) 32 = 22+22+ 12 (not only, trivially, 32+02+02). 
(b) aA_b_l_c. (c) The 'star' ors  = 24 vectors Wa, We  P, 
contains and is exhausted by bases of different ICS, 
say equivalent copies, all of which belong to the type 
L3(221) defined by the square decomposition of 32 
given sub (a); actually, there are four such copies 
having no common basis vector. Note that, with W 
m3m, the coordinates of W(uvw) are all the permuta- 
tions of +u, ± v, + w. (d) The inte_gers involved in 
the face diagonals as d '=  141, 303 etc. and in the 
body diagonals d"=333, 151 etc. of the unit cell of 
L3 just correspond to all the following decomposi- 
tions: 2n 2=18=42+12+12=32+32+02 , 3n2=27 = 
51+ 12+ 12 = 32+32+32. (e) Finally, face-centred ICS 
such as L~(141; 114; 411) etc. and body-centred ones 
such as L3 (151; 115; 511) etc. of L1 are easily con- 
structed using the diagonals d' and d" respectively. 
[The subscript 3 refers to the p.c. L3; of course, we 
might also proceed by centring the unit cube of 
L6(442; 244; 47.4).] The corresponding copies of L3, 
L~ and L~ have the same point groups P and P*. 
Different copies of the centred ICS have in fact com- 
mon basis vectors owing to the unequal numbers 
s'= 24 or 12 of the vectors in the 'stars' { W(141)} or 
{ W(303)} respectively, and similarly with s"= 24 or 8. 

3. Square decompositions and the ICS 

To find further triplets of cubic basis vectors in L1, 
we take n = 2 , 3 , . . . ,  since for odd-dimensional 
spaces n must be an integer (Cassels, 1959), and look 
for all the p decomposition of n 2 into two or three 
squares of integers Uk --> Vk > Wk > 0: 

n2=u~+v~+w~, uk, vk> 0, 

k = l , . . . , p ( n ) .  (1) 

Of course, from (1) it follows that 

(hn) 2 = (hug) 2 + (hVk) 2 + (hWk) 2, 

k = l , . . . , p ( n )  (2) 

so that any Ln(a,b; c) gives rise to 'thinner' ICS 
Lh, ,(ha;hb;hc)-hL, ,(a;b;c) ,  h > l ,  but p(hn)> 
p(n) is possible. For m=h~n~=h2n2=. . . ,  those 
q(m) < p ( m )  decompositions (1) of m 2 may be called 
essential which cannot be written in the form (2). 

For 2n 2 and 3n 2 only decompositions into more 
than one square are possible, with k ranging up to 
p'(n) and p"(n) respectively; the quantities q'<p'  
and q"< p" can be defined in analogy with the above 
consideration. 

If w = 0 in (1) we obtain a Pythagorean case of 
ICS: L,,(uvO; ~3u0;00n) with P * = 4 / m  and ell001. 
Note that any two vectors uv, ~u define an inclined, 
or rotated, square sublattice of l~(10; 01) owing to 
the even number of dimensions. [Enlarged cells based 
on similar two-dimensional square sublattices have 
been used in treating the disorder-order transition of 
the alloy MoNi4 (B~irnighausen, 1980).] 

4. On the ICS found 

By inspection of the tabulated square decompositions 
of s = 1, 2 , . . . ,  1000 (International Tables for X-ray 
Crystallography, 1959) and by calculation for n up to 
83 the following analogues of (a) through (e) have 
been found: (A) At least one decomposition (1) exists 
for each n > 1, except for n = 2', t = 1 , . . . ,  6, and we 
have p (2 tn )=p(n )  for t up to 4. (No restriction for 
t seems to be valid in both cases.) Less than 3p 
different integers appear in the decompositions (1) 
except for n = 2'.7 where p = 1. Often p > 1" for n = 33, 
65, 73, 79, p = 1 0 ;  p(57)=p(77)=15; p>20  for 63 
and 81, see Table 1. The more detailed study has then 
been restricted to n =3,  5 , . . .  ,31 (<10001/2); 63, 81. 
It can be stated that (B) triplets of mutually 
orthogonal vectorsalways occur among the vectors 
W(UkVkWk), W e  m3m, 1 <-- k<-p(n) - see n = 15 and 
25 in Table 1 - or l<-k<-q(n), but (C) the basis 
vectors may belong to 1, 2 or 3 different 'stars', apart 
from the Pythagorean cases mentioned in § 3. So we 
can distinguish the case I ICS with P * =  3 (or 3m 
if u = v), the case II with P* = 2/m as L 9 ( 8 4 i ;  148; 
474) and case III with P * = I  only as L15 
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Table 1. Selected data on the ICS for n = 3, 

n p q p' p" Cases 
3 1 2 2 I 
5 1 3 2 P 
7 1 3 2 I 
9 3 2 4 4 II 

11 2 4 4 II 
13 2 5 3 P, I 
15 4 2 7 6 III 
17 3 6 5 P, II 
19 3 6 5 II, I 
21 6 4 8 6 I, III 
23 3 7 5 III 
25 4 3 10 7 P, III 
27 8 5 9 9 III, 

1I 
29 4 9 6 III, 

P 
31 4 9 6 I, III 

63 20 12 22 17 III 

81 22 14 23 23 III, 

5 , . . . ,  31, 63, 81 

Type symbols of primitive ICS 
(221) 
(430) 
(632) 
(841 744) 
(962 766) 
(12,5 ,0) , (12,4 ,3)  
(14, 5, 2111 , 10, 2110, 10, 5) 
(15, 8, 0), (12, 9, 8112, 12, 1) 
(18, 6, 1117, 6, 6), (15, 10, 6) 
(20, 5, 4), (19, 8, 4116, 13, 4116, 11, 8) 
(22, 6, 3118, 14, 3118, 13, 6) 
(24, 7, 0), (20, 15, 0120, 12, 9116, 15, 12) 
(26, 7, 2123 , 14, 2J22, 14, 7), 
(25,10, 2123, 10, 10) 
(24, 16,3124, 12, 11121, 16, 12), 
(21, 20, O) 
(30, 6, 5), (27, 14, 6122 , 21, 6J21, 18, 14) 

(62, l l ,  2159 , 22, 2 58, 22, 11), 
(62, 10, 5150 , 38, 5 50, 37, 10), 
(53, 34, 2146, 37, 22[43, 38, 26), 
(53, 26, 22146, 43, 2J38, 37, 34) 

(79, 16, 8 64, 49, 8164, 47, 16), 
~(76, 28,1168, 41,16 64, 44, 23), 
i(76, 23, 1668,44,1 64,41,28) 
(65, 44, 20156, 55, 20155, 44, 40), 
(56, 49, 32156, 56,17) 

(14, 5, 2; 2, -10,  11; 5, -10,  -10).  In the abbreviated 
type symbol for the case II ICS, the first triplet of 
integers is understood to appear in the coordinates 
of two basis vectors, see Table 1. Its last column 
shows that some 'stars' contain basis vectors of 
different ICS, e.g. of L~5 and 5L 3 (cases III and I, 
respectively) or of L25 and 5Ls (III, P). Some case 
III ICS exhibit nine different integers in the bases 
but for two different types simultaneously, as indi- 
cated by the vertical dotted lines. Finally, as examined 
in detail for all the Ln studied, the face and body 
diagonals of the unit cubes just correspond to all the 
decompositions of 2n 2 and 3n: respectively so that 
straightforward generalizations, (D) and (E),  of (d) 
and (3) have been verified. 

5. Further remarks and hypotheses 

It is seen that the ICS differ from the coincidence-site 
lattices (see Vlachavas, 1985) but bear some 
resemblance to - or represent a special case of (B~ir- 
nighausen, 1980) - the derivative lattices (Inter- 
national Tables for Crystallography, 1987). 

The subgroups of cubic translation groups form, 
under the condition P* = P, a system of interconnec- 
ted chains based on the relations L'~, L~' c L~;L2 c 
L~, L'~'; L, c L~, n prime (Fuksa, 1986; Kopsk2~, 
1988a) but owing to the ICS the system of all the 
subgroups is much richer. 

The properties of the ICS based on essential 
decompositions (1) can also be considered by reduc- 
ing all of them to (1 /n)L , .  Each unit cube with one 
vertex 000 has, then, further vertices with rational 
coordinates on the unit sphere and on the 2 ~/2 as well 

as 3 ~/2 spheres; some (finite?) part of the vertices lies 
in the points as for 111 (case I), further in the points 
as 001 and on the circular lines as xyO and xyl ,  
x2+y 2= 1 (Pythagorean ICS) or as xyx, 2x2+y 2= 1 
(case II) with additional axes and mirror planes due 
to the respective groups/5. From this it may be argued 
that m3m is not a maximal subgroup of the full 
orthogonal group as shown in Fig. 10.4.3 in Volume 
A of International Tables for Crystallography (1987) 
(Kopsk2~, 1988b). 

The ICS may have non-trivial implications in num- 
ber theory. To the author's knowledge, the problem 
of the number of p.c. lattice points within a sphere 
of radius r (real number) has been dealt with involv- 
ing decompositions of the form (1) while the existence 
of orthogonal bases for each n, p(n)-> 1, and of all 
the appropriate diagonals seems to suggest interesting 
mathematical hypotheses. 

No non-cubic inclined sublattices have been 
studied. 

It is a pleasure to thank Mrs E. Bicanovfi, Professor 
L. Bican, B. Gruber, Professor B. Novfik, J. Weber 
(Charles University, Prague) and V. Janovec with V. 
Kopsk~ (Czechoslovak Academy of Sciences, 
Prague) for having assisted the author in various 
ways. Also, both referees have contributed to the 
clarity and correctness of presentation. 
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Abstract 

An initial electron density distribution for a crystal 
structure may be directly derived from observed 
diffraction data by maximizing the product of the 
observed and calculated Patterson functions with 
respect to the electron density values within an 
envelope. This maximization problem may be formu- 
lated as an eigenvalue equation, in which potential 
electron density distributions are obtained as eigen- 
densities (eigenvectors) of a symmetric matrix. Ele- 
ments of this matrix depend only on the indices and 
intensities of the observed reflections, and on the 
coordinates of grid points inside the envelope. Eigen- 
densities are calculated for a set of small envelopes 
(enclosing about 20% of the molecular volume) cover- 
ing a unique region of the unit cell whose points are 
unrelated by space-group operations, origin shifts or 
changes in enantiomorph. On the basis of correlation 
coefficients between the observed and calculated 
values for both the Patterson function and structure- 
factor amplitudes, a small set of eigendensities are 
selected for combination into a final electron density 
distribution. This electron density distribution may 
be Fourier transformed to yield calculated structure 
factors. Test calculations on lysozyme indicate that 
phase errors of less than 60 ° may be obtained for 
strong low-resolution reflections by this procedure. 
An extension of this approach to handle crystal struc- 
tures containing non-crystallographic symmetry is 
described. 

Introduction 

A molecular envelope divides the interior of 
macromolecular crystals into two regions of roughly 
equal volumes, consisting of either the molecule or 
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the solvent. Owing to positional disorder of the sol- 
vent molecules, the electron density in the solvent 
region is approximately constant. Enforcement of this 
constraint on the solvent density ('solvent flattening') 
has provided a powerful phase refinement method, 
in both the presence (Rossmann, 1972) and absence 
(Wang, 1985) of non-crystallographic symmetry. In 
principle, knowledge of the molecular envelope also 
provides an approach to direct phase determination, 
but this has not yet been routinely achieved in prac- 
tice. In this note, a constrained symmetric quadratic 
function of the electron densities of grid points within 
a molecular envelope is formulated that depends only 
on the indices and intensities of observed reflections. 
Electron density distributions derived from the 
maximization of this function may be used to directly 
obtain phase information. 

Although crystallographic calculations may be for- 
mally accomplished in either real or reciprocal space, 
a real-space emphasis will be adopted in this work 
since the distinction between molecular and solvent 
regions has a particularly simple real-space interpre- 
tation. Assuming a molecular envelope has been 
defined (the determination of the envelope will be 
discussed more fully below), the problem to be 
addressed is to find density values for grid points 
within the envelope that are consistent with the 
observed Patterson function. This may be accom- 
plished by finding electron density values that maxim- 
ize • : 

~ = E  eo(u,,)ec(uk) (1) 
k 

where • is the product of the multiply corrected 
observed and calculated Patterson functions, Po(Uk) 
and Pc(Uk), respectively. The sum is over points at 
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